
Visual Layout of 
Graph-Like Models
Tarek Sharbak

MhdTarek.Sharbak@uantwerpen.be



Introduction

 Visual formalisms are used to create models of 
problems

 Visual formalisms use graphical icons and arrows to 
represent the entities of the model

 Good models should be readable at a glance

 Good layout techniques are required in visual 
modeling tools

 Tools that support multi-formalisms should have 
dynamic layout behavior



Graph Basics

 Models are simply graphs

 Different formalisms add different constraints on 
these graphs

 Graphs can be of different types, graphs, digraphs, 
Bipartite-graph, etc…

 Graphs might be constrained by number of 
indegrees, outdegrees, or number of vertices 
allowed



Visual 
Aesthetics

 Measure the quality of the graph

 Graph Area
 The minimal area that the graph occupies the 

better

 Vertex Placement
 Multiple vertices should not overlap

 Edge Crossings
 Edge crossings should be minimized

 Edge Bends
 Edge bends makes following edges harder



Visual 
Aesthetics 
(cont.)

 Direction of flow
 Easy follow of the direction of the graph and easier 

to identify source and sink

 Edge Length
 Short edges are obviously easier to follow for 

humans

 Mental Map
 The drawing technique should maintain the mental 

map of the graph

 Vertex Connections
 Big angles between connected edges, makes them 

more distinguishable



Graph 
Drawing 
Techniques

 A good graph drawing technique is one that 
optimize between as much visual aesthetics as 
possible

 Some visual aesthetics contradict with others in 
principle

 Different techniques are more suitable in different 
situations



Graph 
Drawing 
Techniques 
(cont.)

 Layered
 Covers wide range of aesthetics and relatively easy 

to implement

 Graphs should be digraphs and acyclic

 Layer assignment, crossing minimization, and 
horizontal placement

 Force-directed
 Based on virtual physics models

 Simulation of graphs as physical objects, yields a 
good layout

 Vertices as molecules and edges as virtual forces



Graph 
Drawing 
Techniques 
(cont.)

 Orthogonal
 Drawn as a grid where vertices and edges are 

assigned integer numbers as coordinates

 Connected by horizontal and vertical lines

 Optimize a wide range of visual aesthetics

 Linear Constraints
 Commonly used to layout windows in user 

interfaces

 Provide a declarative approach to layout

 A complex linear solver evaluates the constraints



Graph Drawing 
Implementation
s
AToM3

 Models are as useful as how readable they are

 AToM3 is a tool that supports multi formalisms

 Highly extensible

 Drawing algorithms in AToM3 work through an 
abstraction level

 Isolate the layout techniques from the internal data 
structure of AToM3

 Implemented layout techniques
 Layered.

 Spring-embedder (Force-directed).

 Force-transfer.

 Tree-like and circle.

 Linear Constraints.



Formalism-
Specific UI 
and Layout 
Behavior

 Support for multiple formalisms requires more 
robust and dynamic layout behavior algorithms

 The use of a generic user-interface behavioral 
model in statecharts

 Can be extended by formalism-specific layout 
behavior

 The reactive behavior defines how a certain model 
reacts to a sequence of input events, like mouse or 
keyboard clicks



Example of 
layout 
behavior in 
statecharts



Formalism-
Specific UI 
and Layout 
Behavior 
(cont.)

 Generic UI Behavior
 Created using statecharts

 Easily modifiable

 Isolated from other specific layout behavior models

 Formalism-specific Behavior
 Extending the layout behavior of the part that 

require special handling for the formalism

 Formalisms use virtual entities to define the scope 
of the formalism

 Locks can lock the event loop and effectively direct 
all input to the specific layout behavior

 Pre/post UI observers
 Common with delete and select events

 Observers only observe and their sole purpose is to 
direct the input to the correct layout, they do not 
handle the input or conflict may occur



Reference
 This work is based on the following thesis,

 Dubé, Denis. "Graph Layout for Domain-Specific 
Modeling." (2006): 107.



Work to be 
done

 Implement a formalism-specific layout behavior for 
the RPG formalism

 Model the behavior using statecharts

 Consider hierarchy models for scenes with zoom in, 
zoom out functionality

 Moving all of the connected tiles when after the 
user moves one


